US009092329B2

a2 United States Patent 10) Patent No.: US 9,092,329 B2
Stoyanov (45) Date of Patent: Jul. 28, 2015
(54) PROCESS INTEGRATION ALERTING FOR (56) References Cited
BUSINESS PROCESS MANAGEMENT
U.S. PATENT DOCUMENTS
(75) Inventor: Tihomir Stoyanov, Sofia (BG) 8,056,091 B2 11/2011 Brunswig et al.
2010/0281307 ALl™ 112010 Ng cooeviveniciecieieene. 714/40
H . 2010/0325493 Al* 12/2010 Morimura et al. 714/39
(73) Assignee: SAP SE, Walldorf (DE) 2011/0060944 Al* 3/2011 Kawamuraetal. 714/20
2011/0213753 Al* 9/2011 Manmohan 707/640
(*) Notice: Subject to any disclaimer, the term of this 2011/0231707 Al* 9/2011 Davenportetal. ... 714/37
patent is extended or adjusted under 35 2012/0144251 Al* 6/2012 Ca'rey etal. oo 714/57
U.S.C. 154(b) by 135 days. * cited by examiner
Primary Examiner — Sarai Butler
o4
(21) Appl. No.: 13/333,660 (74) Attorney, Agent, or Firm — Fish & Richardson P.C.
(22) Filed: Dec. 21, 2011 57) . ABSTRACT . . o
A computer implemented method may include identifying
. L. one or more business process runtime events received at an
(65) Prior Publication Data events queue of a process integration runtime component.
US 2013/0166963 Al Jun. 27. 2013 One or more errors associated with the business process runt-
’ ime events may be identified. The one or more errors may be
evaluated based, at least in part, on one or more rules associ-
(51) Int.ClL ated with the business process runtime event and configura-
GOG6F 11/00 (2006.01) tion information associated with the process integration runt-
GO6F 11/07 (2006.01) ime component. The one or more rules may be associated
with the business process runtime event and configuration
(52) US.CL p 2
CPC ... GOGF 11/0709 (2013.01); GO6F 11/0784 information associated with the process integration runtime
(2013.01) component having the same format. An alert for the one or
(58) Field of Classification Search more errors associated with the business process runtime

USPC 714/37,47.1,25, 48, 39, 38.1
See application file for complete search history.

event can be stored.

16 Claims, 5 Drawing Sheets

100 ALERTING &7’*’\ 138 PING &3
~ C@NF;GURATQR{‘} \w ADMINISTRATOR [| \Y/ /|
CONFIGURATION '
OBJECTS N
2~ pERTRULES) 13 136
140~ 4
- ALERT LOCAL BPM ALERT Svhé% E;"'A’Lv
CONFIGURATION CONFIGURATION u
{ COMPONENTS ? T
) Mmoo o
RECEIVER w._.-| DIRECTORY | et
DETERMINATION P SAAN A 160 >
L™ S
P RUNTIME COMPCNENTS (A
(ABAPIJAVA) ¥ XYZSOLUTION | 192
102+ vy . CACHE | | CACHED VANAGER J
N RUNTIME | | UPDATE ALERT
RUNTIME MANAGER [RULES AUTOMATIC ALERT
_________________________________ T 40s 7 108" 73 CONFIGURATION INBOX
quve: 04y (16 LOCAL 12 @ () i
i ' H
‘q’jz:gp‘ffomﬂ’?f’ (" EvENTS V»| ALERT |[*— CACHED
prmOnKGRng ENGINE CONFIGURATION , ALERT
aventeror Ve METRICS, -
114 110 A oBJECTS EVENTS, ALERTS CALCULATION
""""""""""""" 111 - ’ ~1 ENGINE
QUELE: D 1 b (D . —
iqueuelcom/ eno v
wimanioing | ALERTS 44p /@Dwﬂow MAF:!AGER ALERTS) \ N
glart<consumer> ! | SMD AGENTS 4 50) 120

US 9,092,329 B2

Sheet 1 of 5

Jul. 28, 2015

U.S. Patent

) OSL~ cinzovons e ,w M <IBUINSUOI> LI
N Buuoyuoudrzix
.X w /w 200 MWPMME_ﬂq mmw‘d‘zdﬁ_\m ZOMPDJOW \\\,WW\ W\ m.mumm:m{ ,w \Eﬁamwﬁmmm&\
e, . ENE
ONT |/ ,) N N\ N
NOLLYINDTYD |] SLHTTY BINAAZ Y sioarso |7 () oLl 7Ll
... SOHMLTIN ; »a JOLBJUBAS
LI NOLLYHODINGD INION ~ BucyoLyd
(FHOVO of | LTW |l SINIAZ) zhyjuanenanty
w ° 2L} WO 4 <ol N »01 <} ‘3NanD
XOEN! NOILYHNDIINGD 4 801 ") 90k)
LMY ILLYHOLNY S3N HIOVAYIN INLNAY
v = IREL, 3ivadn | | awiNny A 201
_ (IHOYD THWD
44" NOLLITIOS ZAX , {(YAYPIdvEY)
\u» SININGEWOD SWUNMR I -
o
e aieaiaae N 3
o7 D
m o NOLLYNINNZLEG
I S NNSRRPL o ANOLITHIC WIAITOTM
{ fd
& \ (sinanodwoo)
p— NOILYHNDIHNGD NOLLYENDINGS
i LI W8 YOO INER
WS SH S L4V
SIS — < () oy
el FA%
- (s3ny Ly \v/mﬁ
C ok SLOErE0
NINT . NOILVEOBIANGD
% L MOLYMLSINIAGY . T,,,C%%%@mzoo T o
; ONId ool &3 ONLYEW I "DId G0t

US 9,092,329 B2

Sheet 2 of 5

Jul. 28, 2015

U.S. Patent

802 wmm,/p = washg [] &
" USZOIS S0UB)SH| $3800Id i
suibuz Jaidepy BaUSe(76y enbu ssdepy 1 D884 EIUBISY] S3E3CI]
subug Jeidepy Rausde g7 suibuz ssdepy i amopd joon (@] o
subu Jeidepy auLIen A, siibus asdepy 1 DRER.] UORBRUAUL ABIUSSIY]
subuy Jeydepy [eausiey pxg subus mdepy 1 [18]i8. LONBIOAL] 1888y]
Jenteg uoneibany | 7y suibug isideny Ry 4 uojroex3 ey [] &
OB wauodwon | ey ey Addy [T SHEIS(] STHEIS dnous) smElS
, ceen 1 P v puedey || gy esdeog |
sjusuodiuos swnuny sasrng shessay
seenpeyg aflesse)y | syeuodwon \ _ sasmjelg ebessely ¢ sweuodwog | [BISUSD
&) NYIWIOS [| GLQL LLOZPOR0 £ 0 Wdd 8Nl iS9L UBE | BANOY ION O
GEptTISUBAR | PEDL LLOTYS0 E70 I 188} 008 |ynessoong {7
%@mmmwwmmw SuIus | 742 LIOTSUTL | SBA mhmmﬁwm w%mﬂww id | IS8 piodsuB: 7L g AN | BM0Y ION &

TYA-OL LAY BYOA T 95Tl LI0ZB0B0 L - S8A | aniLisje owEp dg PUZIZPUZRAB[™, € [IMTAI L Pejied T
o ot e o, | 1591 B G B ey e)
;/%.ﬁ OL LI SUNS | SPELLOZYO0L | SA | e o aeney | W | VORIV LE L BAK EEWM&
T4 202 15\
- suinsuon | g pebueynise | uo pabueyy jse | peigeug vondunss(] BuEN aEg Ly
= | Aousjsisuoy yosu) % R || Adoy (| wp3 | [P aweeiy | soimy uely
| a0 yoreng ° F oajionn.]

mopdoAg cuopenbiyuocn pany abessep

'Y JBABRMISN ZAY - uoneinByuos vepy obesssly

J

US 9,092,329 B2

Sheet 3 of 5

Jul. 28, 2015

U.S. Patent

“souRsul 35500ud pojaiad U} o) Slelineu puB '3ySE)} 81 Jol
{S1BUMD 1BNIOB ‘5] 1RUE) SIBSN SJBUILLIOL (LD 05 DUB ‘SISURMD
%93 "AIOJSIY “SHEISp SUIPRSD ‘Sllejep 5E] S} MelA ueo
SICIBASIEDY 'SUSE! Wdd ol Buibiausw pue Suloyiuow
104 BAJR 1AUS0 B S uonendde syse] eleusw sy

Syoe] Sheu

‘sananb punciByoeg pue WOWNDoE Jo $HRS

U} ¥OBUD 0SB UED NOA SOmEa jsipuwisied puB STIEIS M8l
JOYUCH DU SEOUBISUI $5600 J0) UDIBES UBS MDA TUD U8 puB
‘siuswiyaene ‘sBinddewy sosweipd ‘sadd) Joisurered "mol io)
DpEYIRYs g Ueo seeiduie DejRAOR Iy TIUSIUCS pauodsuRy
au yw JourelBioy ‘pousd swin syoeds & Jop padeldsp aie
sisanbel yodul pug YodyT sisloduIoD aMpBlcld pSpIng
0 smEs weuno ey shaidsip ui-Bnid SRINDRIOIY pepIng B, oo
sapea0id pepio | &

SDUBZIM LDk T JCISIURUDE U] JOIRASRTETS wmﬂ_mi
A Pomayy, UOICISILIDY PRz ooy

%

‘552004 B ue Uoie ejeudaidde ue uuound pue 'Sise peBal
o1 21ebingy U0 08 pUB 'MBIUCD S88000 AISH MOl LONILLSD

seaotud w0y eoumsy sse00id ‘Sietep see0nid au) MalA ugD
SICMBASILILDY sas52004d g oy BuBeusw pur Buuoyuow
10} B8R RIS € § uopeoidde sassennld sbeupyy sy
89558000 olBUBW

S8R} pUE S888000)] | SqOP “ 598ROBIRQ PUB BJ2C] | 83B00Y pUR SIas) _ SUBISAS
| ¥OS | Sugoouseignos. | vopmnbyuon | suojeiedG ¢ eouswiosd pue gy | soedswiom Ay
A0 YNBSS |39 WY PRSGLE LLOZILZI0L eiegeun wepsAg _ LE"£ A S0UBI0) UG §47) WBISAS _ 1817 2191000 B0sd SAN0Y | OIRISIMUIDY LBs]

S wﬁagwf <o DIBIO 00] 1 M Paziruosisd JOBRSHBIIDY JAABBABN ZAY /
« * Q) »506) shopg sofeg o LS »@m _ JRHSIIIDY JSARSAIBN ZAX - SLU0H
t
L@ &b 1 sauoneg 7
gﬁmmm@m %m“@“ b [0 DA~ B 00r WESE U Y00 ZRpsannosayoduingemnnnus sy sos e T L nd T a @

m JOIRRSIURUDY JOABBAAIBN ZAX - SUWCH m.nw

, ©
€ DI ohe

US 9,092,329 B2

Sheet 4 of 5

Jul. 28, 2015

U.S. Patent

seny ey~ fo7 100

T mmNEm BOLEISY] 55800 _ \q...a@bll&ffm
iz d SOURJSL S9800L] ™
0¥ ./ w013 0403 Wasid
paye. vojesosN nifemy I
paie- Loneaoaly, fsainy]
uoproex sy [] &
__ = sie(feTES dnoucy smeis A
YOS Wim T glol LLOZ080 | s8A | TIIVAN | spuiseL e | Ay IoN ©
MROLLNTTY | XNL| 9571 1)0ZB0R0 | S9A ! oMVl oD Wag | WdE | By/uiely NRIPUTPUZEREr | E) Al pajie B
NYIOS T NGL'0L LIGZY080 | 8A o eini il | aapy ioN O
saunsuog | Ag pelueynise | udwalueysn iset | peigeus %ﬁ%mwmu A BIUBN oeg 0

_M ey saquisy || ey ubissy 7

megwene | Aoy

m SIBASRILDY x_ LONIIEY] $59004d m s

S53004 BINI014 DUE BONMOG PULS SIUBISH 5530040 1) 40 SBESY

RO R SRR R R n e §S000IINdIHOYIM 553600 W

DLOZIOE/V0 | PLLPEVEOPITELID | 8In0Di PUE SOIMOS PULY | SSBU0IJ BIND0I] PUR 8408 Pl - 538.0044 1

JLOZI0EA0 | GIPLLBGYRINDG/T, | IND0k] DUB 20IN0G DU | S53001d 8IN001- DUE S0IN0g plity s5e40044 U}
£
| 7 oopidwon | v 1B PRUBIS |l SOURISH 53800k 18lang 5580014 BUBN 5520044 | smmg apnkoay | sieis Dy
[0] | 180UBISY] SS3U0MY PUl

ﬂwnmm 115 59558003 Jorheg |

i

| S5, pejejoy] moug || Mol 858001 MOUS __Wm%_g“__ 450859001 Buuuny |1y | MOYS

_ 05y _ m 1.0) yoleag ¢ ¥olon Vouripeemy ¥ oeajuoas
‘ | Fhmsy <o plEmiog B ENE SOSURISY| $50304,] .$a550004, sbeusy
o @ agof] shges aefeg o @ =1 3 — JOIRASIUILDY JRABSAAIBN ZAY, - 59558004 sfieuep / _\
. &
7 (0¥

U.S. Patent Jul. 28, 2015 Sheet 5 of 5 US 9,092,329 B2

500

\

CONFIGURING A PROCESS INTEGRATION COMPONENT

502 -

¥
504 ~_ STORING THE CONFIGURATION OF THE PROCESS
INTEGRATION COMPONENT IN A CENTRALIZED DIRECTORY

¥

506~ RECEIVING THE CONFIGURATION OF THE
PROCESS INTEGRATION COMPONENT

¥
508~ RECEIVING BUSINESS PROCESS MANAGEMENT
SPECIFIC RULES IN A CACHE ALERT RULES OBJECT

¥ ¥

|| EXECUTING THE PROCESS Busﬁﬁgggﬂ;ﬁg&gs L
510~"] INTEGRATION COMPONENT MANAGEMENT RUNTIME 912

¥ ¥
| RECEIVING A RUNTIME ERROR/EVENT FROM THE
514 BUSINESS PROCESS MANAGEMENT RUNTIME

¥

EVALUATING THE RUNTIME ERROR/EVENT BASED ON
BUSINESS PROCESS MANAGEMENT SPECIFIC RULES
AND THE PROCESS INTEGRATION CONFIGURATION

516"

¥
| PROVIDING AN ALERT ABOUT THE ERROR/EVENT TC A
518" CONSUMER BASED ON THE RULES AND CONFIGURATION

FIG. 5

US 9,092,329 B2

1
PROCESS INTEGRATION ALERTING FOR
BUSINESS PROCESS MANAGEMENT

TECHNICAL FIELD

This disclosure pertains to notifying failures of business
process instance executions based on process integration (PI)
component-based alerting solution.

BACKGROUND

BPM has no central configuration conception. The con-
figuration aspects for BPM are available on the same physical
system where the BPM runtime is deployed. This is in con-
trast to PI configuration conception, where the PI Directory is
the central configuration repository for all PI components and
this configuration is then distributed (and represented locally
in a cache) to each PI component (cache update) after con-
figuration activation.

SUMMARY

In certain embodiments, a computer implemented method
may include identifying one or more business process runt-
ime events received at an events queue of a process integra-
tion runtime component. One or more errors associated with
the business process runtime events may be identified. The
one or more errors may be evaluated based, at least in part, on
one or more rules associated with the business process runt-
ime event and configuration information associated with the
process integration runtime component. The one or more
rules may be associated with the business process runtime
event and configuration information associated with the pro-
cess integration runtime component having the same format.
An alert for the one or more errors associated with the busi-
ness process runtime event can be stored. In certain imple-
mentations of the embodiments, the format is a JavaScript
object notation format.

In certain implementations of the embodiments, the one or
more rules associated with the business process runtime event
comprise alert rules defining configuration parameters for
communicating the one or more errors to one or more con-
sumers.

In certain implementations of the embodiments, the con-
figuration information associated with the process integration
runtime component is stored in a process integration direc-
tory.

In certain implementations of the embodiments, the con-
figuration information associated with the process integration
runtime component is enhanced with runtime specific alert
rules for the one or more business processes. The enhanced
configuration information associated with the process inte-
gration runtime component may be stored in a cached alert
rules object.

In certain implementations of the embodiments, the one or
more business processes and the process integration runtime
component are run locally relative to one another.

In certain implementations of the embodiments, identify-
ing the one or more errors associated with the business pro-
cess runtime events comprises identifying one or more errors
that are received in the same format as the configuration
information associated with the process integration runtime
component.

While generally described as computer implemented
methods, some or all of the aspects may be software embod-
ied on non-transient, tangible media that processes and trans-
forms the respective data or further included in respective

10

15

20

25

30

35

40

45

50

55

60

65

2

systems or other devices for performing this described func-
tionality. The details of these and other aspects and embodi-
ments of the present disclosure are set forth in the accompa-
nying drawings and the description below. Other features,
objects, and advantages of the disclosure will be apparent
from the description and drawings, and from the claims.

DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic illustration of an example environ-
ment for BPM alerts integration with a PI alerting solution.

FIG. 2 is an example screenshot of a user interface tool for
configuring an alert rule in the PI directory.

FIG. 3 is an example screenshot of a user interface for BPM
specific configuration of alert rules.

FIG. 4 is an example screenshot of a user interface for
BPM-specific alerts configuration.

FIG. 5 is a process flow diagram for evaluating business
process error events using process integration.

DETAILED DESCRIPTION

This disclosure pertains, in general, to how business pro-
cess management (BPM) can be integrated into existing pro-
cess integration (PI) alerting solution and benefit alert notifi-
cations when errors are happening during process execution.
This document describes components and configuration tools
to facilitate the integration of BPM alerts to a PI alerting
solution. BPM may be installed on any PI (central/de-central)
adapter engine. This disclosure contemplates, among other
things, that the PI advanced adapter engine & BPM are on the
same physical system (e.g., JAVA stack).

In general, a central configuration is stored in a PI directory
for BPM alert rules, and some of the configuration aspects are
later handled on local systems where BPM is deployed. BPM
runtime will be executed locally with PI runtime components,
the configuration of PI alerting can be enhanced with BPM
specific alert rules for handling runtime erroneous events
using the PI alerting solution. In the PI directory, an abstract
BPM rule can be described, but the instantiation-side process
and identification, and other BPM specifics, are configured at
the local PI component where BPM is deployed. BPM runt-
ime can push events in the PI alerting event queue with a
corresponding JavaScript Object Notation (JSON) format. A
local alert engine for

PI is enhanced to be able to process those BPM specific
events based on the existing rules from the PI Directory,
which has been locally associated to particular BPM runtime
process instances. An alert configurator actor can create, edit,
and store configuration information, alert rules, in a PI Direc-
tory, which includes information about the PI components
where BPM is deployed.

Separating BPM alert rule configuration to central and
local locations maintains the contract with the alert consumer
solutions alert inbox 122 on solution manager 120 (configu-
ration part in PI Directory), while BPM-specific configura-
tion, that could not be maintained in PI Directory, is done
locally. The option ot having a completely local configuration
for BPM used by local alert engine is also contemplated, but
may stay hidden from the alert inbox 122 on solution manager
120 because it is performing some grouping and aggregation
steps based on the alert rules as defined in PI Directory.

Turning to the illustrated example, FIG. 1 is a schematic
illustration of an example environment 100 for BPM alerts
integration with a PI alerting solution. The illustrated envi-
ronment 100 includes, or is communicably coupled with, one
or more PI runtime components 102, a solution manager

US 9,092,329 B2

3

server 120, one or more alerting configurators 138, and a PI
directory 130. At least some of the components can commu-
nicate across or via network 160. In general, environment 100
depicts an example configuration of a system capable of
facilitating integration of BPM runtime error alerts with a
process integration alerts solution.

One or more PI runtime components 102 are executed at
runtime. BPM runtime 104 is executing at runtime locally
(e.g., the same physical system as) to the PI runtime compo-
nent 102. The PI runtime component 102 may be imple-
mented in JAVA and/or ABAP. The PI runtime component
102 is in communication with a PI directory 130, which is the
central configuration storage for distributed PI runtime com-
ponents, such as PI runtime component 102. PI directory 130
is a “central” storage that is accessible to PI runtime compo-
nents across a network 160. PI directory 130 stores alert rules
142 associated with the PI component in a repository 140.
The central configuration is distributed using the cache
update manager 108, which stores the configuration informa-
tion in the cached alert rules object 112, which is stored in
conjunction with cached configuration objects 111. Cached
alert rules object 112 includes a local representation of the
information stored in the PI directory 130 for PI runtime
component 102. Once registered into PI directory 130, PI
runtime component 102 becomes a potential target for any
configuration data distribution. Once configuration is acti-
vated in PI directory 130 it is distributed to all registered PI
runtime components 102. There may exist a plurality of PI
runtime components 102 associated with PI directory 130,
and the PI directory 130 may store a plurality of configuration
data. In the PI runtime component 102, the cache update
manager 108 receives data relevant to that component,
including alert rules 142 configured for that component. This
data is stored in the cached alert rules object 112. In addition,
local BPM configuration data is also stored in the cached alert
rules object 112, and the local BPM information enhances
information from PI directory 130 with BPM specific aspects.
This cached information is then used by local alert engine 110
to evaluate BPM alerts in case a BPM error event is received
in events queue 106.

BPM runtime 104 is running in the PI runtime component
102. BPM runtime 104 is represented with an arrow indicat-
ing that the BPM runtime events are stored in the events queue
106. BPM runtime 104 will push erroneous events into the
event queue 106. BPM runtime 104 is updated so it can
communicate with the events queue 106. Specifically, the
BPM runtime 104 is enhanced to push JavaScript Object
Notation (JSON) format events to the event queue 106 as part
of'its error handling activities.

Java Message Service (JMS) Queues are used to store
events and alerts. The BPM runtime 104 includes one or more
business applications running on the PI components. Busi-
ness process instances run on the PI runtime component 102.
There may occur erroneous situations, and an alert can be
created for these erroneous situations. The local alert engine
110 for the PI runtime component 102 can be enhanced to
cope with BPM specific information to evaluate and fire alerts
for BPM erroneous situations. The BPM runtime 104 is run
on the same physical system as the PI runtime component.
The PI alerting mechanism is based, at least in part, on a
central configuration stored on a centrally accessed PI direc-
tory 130. PI advanced adapter engine is a PI component that
can be registered to and receives configuration data from the
PI directory 130. BPM is deployed on the same physical
system as the PI JAVA components, which is also known as
the Pl advanced adapter engine. Pl advanced adapter engine is
supporting different messaging protocols for PI. Each PI

5

10

15

20

25

30

35

40

45

50

55

60

65

4

adapter engine has local alert engine 110 incorporated in
order to evaluate alerts based on configuration data coming
from PI directory 130.

The BPM runtime 104 reports erroneous events to the
events queue 106. An example queue name is as follows:

/queue/com/sap/pi/monitoring/event/error/

As an example, the following events are supported for BPM
scenario:

PROCESS_INSTANCE_FAILED: Process instance in
Error state. This error can be the result of an internal
error;

PROCESS_INSTANCE_FROZEN: Process Instance sus-
pended. This error happens in response to failure to
invoke a web service successfully

Other error and events are also contemplated. The BPM runt-
ime 104 is instrumented in such a way as to publish the
erroneous events on the same event queue 106 as the PI
runtime 105. The events queue 106 acts as a storage for the
runtime error events from both the BPM runtime 104 and the
PI runtime 105.

Some aspects of BPM alerts, like process name, process
1D, instance ID, and process status have no analogue in cur-
rent JSON format of PI alerting and this requires extending it.
Changes in existing JSON format for Pl alerts would also lead
to an extension of the alert inbox 122 on solution manager
120. Solution manager’s alert inbox 122 aggregation contract
might not be changed. That is because it is based on those
parts of alert rule which are all part of a central configuration
like component, error type, or rule identifier.

In general, because BPM configuration details are not
exposed and maintained to any central repository, the con-
figuration for BPM could not be completely done in PI direc-
tory 130, but are split on central and local configurations. The
central configuration maintains those aspects that are repre-
senting the contract to the solution in the alert inbox 122. The
local configuration will maintain the BPM specifics to allow
the local alert engine 110 to evaluate alerts based on BPM
error events.

Alert rules 142 for BPM should be similar to other alert
rules currently available in PI directory 130. An alerting con-
figurator 138 can be a user or client system capable of modi-
fying the configuration using an interface tool. Alerting con-
figurator 138 has a Ul (shown in FIG. 2), and accesses PI
directory 130 and configures different aspects of the P1. Alert-
ing configurator 138 can also configure alert rules 142 for PI
alerting. Alerting configurator 138 is allowed to configure,
modify, and create alert rules 142 in the PI directory 130. The
BPM alert rules may be maintained in two phases by the
alerting configurator 138: a central configuration phase, and a
local configuration phase. FIG. 2 is an example screenshot
200 of a user interface tool for central configuration of alerts
in the PI directory. FIG. 4 is an example screenshot 400 of a
user interface tool for local configuration of BPM alerts,
which is described later below. In FIG. 2, JAVA PI compo-
nents are displayed for BPM alert rules. Alerting configurator
138 can apply those rules with BPM deployed so that the
corresponding local alert engine 110 can evaluate the rule and
alert BPM error events. BPM specifics are not maintained and
stored in the PI directory 130, but rather are stored locally on
the PI component where BPM is deployed. FIG. 2 shows an
error state 202 for a deployed BPM, as well as where (to
which consumer queue) to direct the alerts evaluated for the
selected rule, which in this case is ALERT-TO-MAIL 204. PI
runtime components 206 are also listed. A catalog 208 of
potential erroneous situations can also be provided.

The central configuration for BPM alert rule includes the
same general aspects as the one for Pl alert rule. These general

US 9,092,329 B2

5

aspects maintained in PI directory are (as shown in FIG. 2):
where errors might happen (Components’ tab, 206), what
kind of error (Message Status’ tab, 208) and to where to
distribute the alerts (Consumer’ column, 204). ‘Message
Header Rules’ tab is not applicable for BPM alert rule. The
catalogue with possible errors 208 is different for BPM alert
rule and Pl alert rule. The association of BPM process to BPM
alert rule will have to be done locally and is not part of the
central configuration shown in FIG. 2. This is because PI
Directory has no information about BPM processes. PI direc-
tory distributes configuration data to PI runtime components
but not the other way around.

Returning to FIG. 1, alerting configurator 138 may use a
local BPM alert configuration UI (shown on FIG. 4) on the
system where BPM is deployed to configure BPM specifics of
the rule (like process name, process id, process instance id, or
process status). The local configuration Ul for BPM alerts
will have to only maintain the association between existing
alert rule and BPM process instance.

Alerting configurator 138 may be a user or computing
device operable to connect to or communicate with the PI
directory 130 and the local BPM alert configuration 134 using
a wireline or wireless connection, via the network 160, or
another suitable communication means or channel. In some
instances, the alerting configurator 138 may be a part of or
associated with a business process involving one or more of
the application systems, while in other instances, the alerting
configurator 138 may be associated with an administrator. In
general, each alerting configurator 138 includes a graphical
user interface (GUI) 132 for configuring alerts in the PI direc-
tory 130 and a GUI 132 for configuring local BPM alerts. In
general, alerting configurator 138 includes an electronic com-
puter device operable to receive, transmit, process, and store
any appropriate data associated with the environment 100 of
FIG. 1. It will be understood that there may be any number of
alerting configurators 138 associated with, or external to,
environment 100. For example, while illustrated environment
100 includes a single alerting configurator 138, alternative
implementations of environment 100 may include multiple
configurators communicably coupled to the one or more of
the systems illustrated. Additionally, there may also be one or
more additional alerting configurators 138 external to the
illustrated portion of environment 100 capable of interacting
with the environment 100 via the network 160. Moreover,
while each alerting configurator 138 is described in terms of
being used by a single user, this disclosure contemplates that
many users may use one computer, or that one user may use
multiple computers.

The GUIs 132 associated with each alerting configurator
138 may include a graphical user interface operable to, for
example, allow the user of an alerting configurator 138 to
interface with at least a portion of the PI directory 130 and the
local BPM alert configuration 134 and its associated opera-
tions and functionality, including the one or more dashboards.
Generally, the GUIs provide the particular user with an effi-
cient and user-friendly presentation of business data provided
by or communicated within the system. The GUI 132 may
comprise a plurality of customizable frames or views having
interactive fields, pull-down lists, and buttons operated by the
user. For example, the GUI 132 may provide interactive ele-
ments that allow a user to interact with the PI directory 130 or
the local BPM alert configuration 134, as well as other com-
ponents within and/or external to environment 100. The dif-
ferent portions of functionality provided by the PI directory
130 or local BPM alert configuration 134 may be presented
and accessible to the user through a GUI 132. Generally, the
GUI 132 may also provide general interactive elements that

20

25

40

45

55

65

6

allow a user to access and utilize various services and func-
tions of a particular configurator. Alerting configurator 138
may access and manipulate the PI directory 130, including as
an administrator capable of modifying the operations and
parameters associated with the alerts associated with one or
more PI instances, as well as modifying the definitions and
boundaries of a particular PI domain. A GUI 132 may present
the information for viewing and interaction. In general, a GUI
132 is often configurable, supports a combination of tables
and graphs (bar, line, pie, status dials, etc.), and is able to build
real-time portals, where tabs are delineated by key character-
istics (e.g., site or micro-site). Therefore, the GUI 132 con-
templates any suitable graphical user interface, such as a
combination of a generic web browser, intelligent engine, and
command line interface (CLI) that processes information in
the platform and efficiently presents the results to the user
visually.

As used in this disclosure, each alerting configurator 138 is
intended to encompass a personal computer, touch screen
terminal, workstation, network computer, kiosk, wireless
data port, smart phone, personal data assistant (PDA), one or
more processors within these or other devices, or any other
suitable processing device. For example, each alerting con-
figurator 138 may comprise a computer that includes an input
device, such as akeypad, touch screen, mouse, or other device
that can accept user information, and an output device that
conveys information associated with the configuration of one
or more alerts, including digital data, visual information, or
the GUI. Both the input and output device may include fixed
or removable storage media such as a magnetic storage
media, CD-ROM, or other suitable media, to both receive
input from and provide output to users of alerting configurator
138 through the display, namely, the GUI 132.

The local BPM alert configuration 134 is stored on the
cached alert rules 112 at the local PI runtime component 102.
The local alert engine 110 uses BPM specific rules stored on
the cached alert rules 112. This could be done in BPM local
persistence layer which will be maintained via dedicated
local configuration user interface. PI runtime component 102
uses the JSON format to represent an alert. Local alert engine
110 is extended to also evaluate BPM alerts based on BPM
alertrules (the BPM alerts are enhanced with JSON formatted
messages for alerting erroneous events). BPM runtime 104
will have to put events with extended JSON format in event
queue (with only BPM relevant fields). For example:

“ErrCode”:*“! X1 Alert Test errorcode”,

“ErrCat™:*“!XI Alert Test errorcategory”,

“ErrText”:*! This is a test alert sent from the AdapterFramework on ,
“ProcessDefinitionName™:“<Process Name>",
“ProcessDefinitionID:“<Process ID>",
“ProcessInstancelD”:*“<Process Instance ID>",
“ProcessStatus™:“<Process Status>"

Local alert engine 110 will evaluate and distribute to corre-
sponding consumer queue BPM alert (based on extended
JSON format with BPM relevant fields only plus alert inbox
122 aggregation relevant fields):

{
“Ruleld”:*2a96d40eb1b711dfb2bbec7c0al2cafl”,
“Timestamp™:*2010-01-30T13:15:30Z”,
“Component”:“af.y3y.lddby3y”,
“ErrLabel”:*1000”,

US 9,092,329 B2

7

-continued

“ErrCode”:*!XI Alert Test errorcode”,

“ErrCat”:“!XI Alert Test errorcategory”,

“ErrText”:*! This is a test alert sent from the AdapterFramework on ”,
“ProcessDefinitionName”:“<Process Name>",
“ProcessDefinitionID”:“<Process ID>",
“ProcessInstancelD””:“<Process Instance ID>",
“ProcessStatus™:“<Process Status>"

Local alert engine 110 will not use PI message header data to
evaluate alerts, but rather will use BPM specific data coming
from BPM local alert rule configuration.

Alerts are stored in the alerts queue 114 and may use the
following example file name:

/queue/com/sap/pi/monitoring/alert/<consumer>
Each alert rule can be configured for each consumer to which
the alert is distributed, and the consumer name may be
reflected in the file name. In that sense, each consumer has a
separate queue.

Local BPM alert configuration 134 enhances the informa-
tion from the PI directory 130 with BPM-specific aspects.
The BPM runtime 104 is instrumented so that it publishes
error events in the events queue 106. The local alert engine
110 will retrieve the events and evaluate them based on the
alert rules. Local alert engine 110 has two inputs: the event
from events queue 106 and the alert rule from the cached alert
rules 112. Using these two things, local alert engine 110
evaluates the alert. The local alert engine 110 will distribute
the alert to the queue for the consumer(s) identified in the alert
rule. Local BPM alert configuration 134 shall add to already
existing rules in PI directory 130, and BPM specifics, such as
process 1D, instance 1D, process name, process status, con-
sumer, etc., are maintained. Alert inbox 122 has aggregation
fields, such as component, rule, error label, and consumer,
which will still be part of PI directory 130 configuration for
BPM alert rules. FIG. 3 is an example screenshot 300 of a Ul
for BPM specific configuration of alert rules.

FIG. 3 shows an example implementation Ul in NetWeaver
Administrator of a local configuration Ul for BPM. FIG. 3
shows is an example location for incorporating local configu-
ration aspects of BPM alert rules.

The UI could be incorporated into an existing NetWeaver
Administrator embedded application for managing BPM pro-
cesses. The system of FIG. 1 shows a PI Alerting solution
architecture, where BPM pushes events in the event queue
with corresponding JSON format, local alert engine has to be
extended so that to be able to proceed those BPM specific
events based on the existing rules from Pl directory which has
been locally associated to particular BPM process (in-
stances). Alerting configurator 138 has to specify in PI direc-
tory 130 which PI components where BPM is deployed, as
part of alert rule configuration.

The local alert rule configuration UI (shown in FIG. 4) may
be run locally on the PI component where BPM is deployed.
The Ul is part of the BPM distribution, and may be part of the
NetWeaver Administrator application. The UI allows the
alerting configurator 138 for BPM-specific customization of
alert rules. The UI uses its own persistence layer. The local
alert engine on this component will recognize BPM events on
the event queue 106 (by the JSON format), and apply BPM
rules on them for evaluation of BPM alerts.

The alert rules are configured with notification options,
erroneous situations, PI components, BPM runtime events,
etc.

FIG. 4 is an example screenshot 400 of a user interface for
BPM-specific alerts configuration. The association between a

10

15

20

25

30

35

40

45

50

55

60

65

8

BPM process instance and an alert rule can be maintained and
stored locally on BPM component where the corresponding
local alert engine will consider it. Alert rules persist in the PI
Directory, and details could be displayed in read only mode in
dedicated Alert Rules tab 402. The alert rules tab 402 shows
the BPM alert rules 404 also shown in the Ul screenshot 200
of FIG. 2. The Alert Rules tab can be added to an existing
configuration UI for BPM, as shown on FIG. 3, to associate
alert rule to BPM process instance.

Returning to FIG. 1, solution manager 120 accesses the PI
directory 130 to get information for PI runtime component
102. The solution manager 120 collects alerts from the PI
runtime component 102 (by way of solution manager alerts
116), wherein each PI runtime component 102 is evaluating
alerts locally. Configuration information for PI is retrieved.
The solution manager 120 collects alerts from the PI runtime
components 102 from local alerts queues, and shows them in
one central place (e.g., the alert inbox 122). The solution
manager 120 aggregates alerts based on aspects of the alerts.

With respect to that the mandatory fields in alert JSON
representation (from aggregation and semantically grouping
point of view) are “Component”, “ErrLabel”, “Ruleld” and
“Scenariold” (brings IntegrationFlowlD in case of Integra-
tion Flow scenario), these have to be prevented and always
available for any kind of alert (including BPM one) and also
shall be part of PI Directory configuration (from where Solu-
tion Manager retrieve information too). For example, if there
are 200 alerts for component A based on alert rule B for
erroneous situation C, alerts can be created, transmitted, and
consumed without the solutions manager 120. The solution
manager 120 collects alerts at a central place, stores them, and
provides a central place where use cases can be searched or
browsed. A PING administrator 136 can configure SMS or
e-mail for notifications for the solution manager 120. Solu-
tion manager diagnostic (SMD) agent 150 is used by the
solution manager 120 to connect to the alert storages (queues)
and consume them, so the solution manager 120 can build its
alert inbox 122. PING administrator 136 can configure the
alert inbox 122. For example, PING administrator 136 may
configure the notification parameters for the alert inbox 122.
Alert inbox 122 allows for SMS, e-mail, and other types of
notifications.

In the illustrated environment, the network 160 is depicted
as a single network, but may be comprised of more than one
network without departing from the scope of this disclosure,
so long as at least a portion of the network 160 may facilitate
communications between senders and recipients. The net-
work 160 may be all or a portion of an enterprise or secured
network, while in another instance, at least a portion of the
network 160 may represent a connection to the Internet. In
some instances, a portion of the network 160 may be a virtual
private network (VPN). Further, all or a portion of the net-
work 160 can comprise either a wireline or wireless link.
Example wireless links may include 802.11 a/b/g/n, 802.20,
WiMax, and/or any other appropriate wireless link. In other
words, the network 160 encompasses any internal or external
network, networks, sub-network, or combination thereof
operable to facilitate communications between various com-
puting components inside and outside the illustrated environ-
ment 100. The network 160 may communicate, for example,
Internet Protocol (IP) packets, Frame Relay frames, Asyn-
chronous Transfer Mode (ATM) cells, voice, video, data, and
other suitable information between network addresses. The
network 160 may also include one or more local area net-
works (LANs), radio access networks (RANs), metropolitan
area networks (MANs), wide area networks (WANs), allor a
portion of the Internet, and/or any other communication sys-

US 9,092,329 B2

9

tem or systems at one or more locations. The network 160,
however, is not a required component in all implementations
of the present disclosure.

The solution manager 120 may include one more proces-
sors, according to particular needs, desires, or particular
embodiments of environment 100. The processor may be a
central processing unit (CPU), a blade, an application specific
integrated circuit (ASIC), a field-programmable gate array
(FPGA), or another suitable component. Generally, the pro-
cessor executes instructions and manipulates data to perform
the operations of the solution manager 120 and, specifically,
the functionality associated with the corresponding PI runt-
ime component, PI directory, solution manager, and alert
configurator. In one implementation, the server’s processor
executes the functionality required to receive and respond to
requests and instructions from the one or more clients.
Regardless of the particular implementation, “software” may
include computer-readable instructions, firmware, wired or
programmed hardware, or any combination thereof on a tan-
gible and non-transitory medium operable when executed to
perform at least the processes and operations described
herein. Indeed, each software component may be fully or
partially written or described in any appropriate computer
language including C, C++, Java, Visual Basic, assembler,
Perl, any suitable version of 4GL, as well as others. It will be
understood that while portions of the software illustrated in
FIG. 1 are shown as individual modules that implement the
various features and functionality through various objects,
methods, or other processes, the software may instead include
a number of sub-modules, third-party services, components,
libraries, and such, as appropriate. Conversely, the features
and functionality of various components can be combined
into single components, as appropriate. In some instances, a
particular solution manager 120 may be associated with the
execution of two or more PI runtime components.

One or more PI runtime components 102 are included in
one or more PI domains. Each PI domain can be defined to
include a set of PI runtime components 102 associated with
one or more business components performing a particular
task or set of tasks. The PI runtime components 102 included
in a particular PI domain may be automatically associated
with one another in some instances, or manually assigned in
others. In some instances, the PI runtime components 102 in
different PI domains may overlap, such that some PI runtime
components 102 are included in different PI domains.
Examples may include PI domains associated with related
business processes where some of the PI runtime components
102 may be used in both situations (i.e., creating a purchase
order and fulfilling a purchase order). A set of PI runtime
components 102 is logically grouped into a PI domain based
on the processes and operations being monitored. The PI
runtime components 102 making up a particular PI domain
can include various runtime components that monitor and
capture message and event information during execution of a
system and its business processes. Some PI runtime compo-
nents 102 may be involved in message processing, while
other PI runtime components 102 may be involved in other
processing. Each PI runtime component 102 is executing or
running on a technical system, such as a system executing
ABAP-based programs and tools or a system executing Java-
based programs and tools, including the application systems
illustrated in FIG. 1. In some instances, more than one PI
runtime component 102 may be running on a single technical
system. Examples of PI components include adapter engines
(e.g., adapter engine of application system A) and proxies
(i.e., Java/ ABAP proxy), although other components can also
be used as PI components.

10

15

20

25

30

35

40

45

50

55

60

65

10

As used in the present disclosure, the term “computer” is
intended to encompass any suitable processing device. For
example, although FIG. 1 illustrates a single solution man-
ager server 120, environment 100 can be implemented using
any number of servers, as well as computers other than serv-
ers, including a server pool. Indeed, the solution manager 120
may be any computer or processing device such as, for
example, a blade server, general-purpose personal computer
(PC), Macintosh, workstation, UNIX-based workstation, or
any other suitable device. In other words, the present disclo-
sure contemplates computers other than general purpose
computers, as well as computers without conventional oper-
ating systems. Further, the illustrated solution manager 120
may be adapted to execute any operating system, including
Linux, UNIX, Windows, Mac OS, or any other suitable oper-
ating system. According to one implementation, the solution
manager 120 may also include or be communicably coupled
with a mail server. FIG. 1 depicts both a server-client envi-
ronment, but could also represent a cloud computing network.

FIG. 5 is a process flow diagram 500 for evaluating busi-
ness process error events using process integration (PI). A PI
runtime component can be configured (502). The configura-
tion can be stored in a PI directory accessible by one or more
PI components at runtime across a network (504). The con-
figuration of the PI runtime component can be received from
the PI directory and stored in a cache (506). For the BPM
runtime, one or more rules may be received and stored with
the configuration information for the PI runtime component
in the cache (508). The PI runtime component can be
executed (510). A BPM runtime can be executed on the same
physical system as the PI runtime component (512). The
BPM runtime may send event messages using JSON format
to an events queue (514). The PI runtime component inter-
prets the JSON formatted message and evaluates the event
from the BPM runtime based, at least in part, on the BPM rule
and the PI runtime component configuration (516). An alert
may be provided to one or more consumers based on the
parameters set forth in the BPM rules (518).

The preceding figures and accompanying description illus-
trate example processes and computer implementable tech-
niques. But environment 100 (or its software or other com-
ponents) contemplates using, implementing, or executing any
suitable technique for performing these and other tasks. It will
be understood that these processes are for illustration pur-
poses only and that the described or similar techniques may
be performed at any appropriate time, including concurrently,
individually, or in combination. In addition, many of the steps
in these processes may take place simultaneously, concur-
rently, and/or in different orders than as shown. Moreover,
environment 100 may use processes with additional steps,
fewer steps, and/or different steps, so long as the methods
remain appropriate. In other words, although this disclosure
has been described in terms of certain embodiments and
generally associated methods, alterations and permutations
of these embodiments and methods will be apparent to those
skilled in the art. Accordingly, the above description of
example embodiments does not define or constrain this dis-
closure. Other changes, substitutions, and alterations are also
possible without departing from the spirit and scope of this
disclosure.

What is claimed is:

1. A computer implemented method comprising:

identifying one or more business process runtime events of

a business process management business process runt-
ime component received at an events queue of a process
integration runtime component, wherein the business
process runtime component and the process integration

US 9,092,329 B2

11

runtime component are run locally relative to one
another on a particular physical system;

identifying one or more errors associated with the business

process runtime events;

evaluating the one or more errors based, at least in part, on

one or more centralized alert rules associated with the
business process runtime event and configuration infor-
mation associated with the process integration runtime
component, wherein the configuration information asso-
ciated with the process integration runtime component is
stored in a process integration directory which is a cen-
tral configuration storage for the process integration
runtime component and other distributed process inte-
gration components and the process integration direc-
tory is separate from the particular physical system,
wherein the one or more centralized alert rules associ-
ated with the business process runtime event and alert
configuration information associated with the process
integration runtime component having the same format,
and wherein a local alert configuration is used to evalu-
ate local alerts for the business process runtime compo-
nent based on business process management error
events; and

storing an alert for the one or more errors associated with

the business process runtime event.

2. The computer implemented method of claim 1, wherein
the format is a JavaScript object notation format.

3. The computer implemented method of claim 1, wherein
the one or more rules associated with the business process
runtime event comprise alert rules defining configuration
parameters for communicating the one or more errors to one
or more consumers.

4. The computer implemented method of claim 1, wherein
the configuration information associated with the process
integration runtime component is enhanced with runtime spe-
cific alert rules for the one or more business processes.

5. The computer implemented method of claim 4, wherein
the enhanced configuration information associated with the
process integration runtime component are stored in a cached
alert rules object.

6. The computer implemented method of claim 1, wherein
identifying the one or more errors associated with the busi-
ness process runtime events comprises identifying one or
more errors that are received in the same format as the con-
figuration information associated with the process integration
runtime component.

7. A computer program product for integrating business
process management error alerting with process integration
alerting, the computer program product stored on a tangible,
non-transitory media, operable to execute instructions com-
prising:

identifying one or more business process runtime events of

a business process management business process runt-
ime component received at an events queue of a process
integration runtime component, wherein the business
process runtime component and the process integration
runtime component are run locally relative to one
another on the same physical system;

identifying one or more errors associated with the business

process runtime events;

evaluating the one or more errors based, at least in part, on

one or more centralized alert rules associated with the
business process runtime event and configuration infor-
mation associated with the process integration runtime
component, wherein the configuration information asso-
ciated with the process integration runtime component is
stored in a process integration directory which is a cen-

15

20

25

35

40

45

50

60

12

tral configuration storage for the process integration
runtime component and other distributed process inte-
gration components and the process integration direc-
tory is separate from the particular physical system,
wherein the one or more centralized alert rules associ-
ated with the business process runtime event and alert
configuration information associated with the process
integration runtime component having the same format,
and wherein a local alert configuration is used to evalu-
ate local alerts for the business process runtime compo-
nent based on business process management error
events; and

storing an alert for the one or more errors associated with

the business process runtime event.

8. The computer program product of claim 7, further com-
prising:

receiving the configuration information associated with the

process integration runtime component from a central-
ized process integration directory;

storing the configuration information in a cache; and

receiving an update to the configuration information, the

update including the one or more rules associated with
the business process runtime event.

9. The computer program product of claim 7, wherein the
format is a JavaScript object notation format.

10. The computer program product of claim 7, wherein the
one or more rules associated with the business process runt-
ime event comprise alert rules defining configuration param-
eters for communicating the one or more errors to one or more
consumers.

11. The computer program product of claim 7, wherein the
configuration information associated with the process inte-
gration runtime component is enhanced with runtime specific
alert rules for the one or more business processes.

12. The computer program product of claim 11, wherein
the enhanced configuration information associated with the
process integration runtime component are stored in a cached
alert rules object.

13. The computer program product of claim 7, wherein
identifying the one or more errors associated with the busi-
ness process runtime events comprises identifying one or
more errors that are received in the same format as the con-
figuration information associated with the process integration
runtime component.

14. A system comprising:

one or more computers; and

a computer-readable medium coupled to the one or more

computers having instructions stored thereon which,

when executed by the one or more computers, cause the

one or more computers to perform operations compris-

ing:

identifying one or more business process runtime events
of a business process management business process
runtime component received at an events queue of a
process integration runtime component, wherein the
business process runtime component and the process
integration runtime component are run locally rela-
tive to one another on the same physical system;

identifying one or more errors associated with the busi-
ness process runtime events;

evaluating the one or more errors based, at least in part,
on one or more centralized alert rules associated with
the business process runtime event and configuration
information associated with the process integration
runtime component, wherein the configuration infor-
mation associated with the process integration runt-
ime component is stored in a process integration

US 9,092,329 B2
13

directory which is a central configuration storage for
the process integration runtime component and other
distributed process integration components and the
process integration directory is separate from the par-
ticular physical system, wherein the one or more cen- 5
tralized alert rules associated with the business pro-
cess runtime event and alert configuration
information associated with the process integration
runtime component having the same format, and
wherein a local alert configuration is used to evaluate 10
local alerts for the business process runtime compo-
nent based on business process management error
events; and
storing an alert for the one or more errors associated with
the business process runtime event. 15
15. The system of claim 14, wherein the operations further
comprise:
receiving the configuration information associated with the
process integration runtime component from a central-
ized process integration directory; 20
storing the configuration information in a cache; and
receiving an update to the configuration information, the
update including the one or more rules associated with
the business process runtime event.
16. The system of claim 14, wherein the format is a Java- 25
Script object notation format.

#* #* #* #* #*

